催化光学纳米能源实验室
Publications
Browse: Home > Publications >

39. Bin Chen, Dehuan Shi, Renxia Deng, Xin Xu, Wenxia Liu, Yang Wei, Zheyuan Liu, Shenghong Zhong,* Jianfeng Huang,* Yan Yu*. Leveraging Atomic-Scale Synergy for Selective CO2 Electrocatalysis to CO over CuNi Dual-Atom Catalysts. ACS Catalysis, 2024https://pubs.acs.org/doi/10.1021/acscatal.4c05169


38. Tianyi Yang, Fangxi Su, Dehuan Shi, Shenghong Zhong, Yalin Guo, Zhaohui Liu,* Jianfeng Huang.* Efficient Propane Dehydrogenation Catalyzed by Ru Nanoparticles Anchored on a Porous Nitrogen-Doped Carbon Matrix. Chinese Chemical Letters, 2024, Accepted. 


37. Dan Luo, Zhiheng Xie, Shuangqun Chen, Tianyi Yang, Yalin Guo,* Ying Liu, Zhouhao Zhu, Liyong Gan,* Lingmei Liu and Jianfeng Huang.Enhancing Electrocatalytic Semihydrogenation of Alkynes via Weakening Alkene Adsorption over Electron-depleted Cu Nanowires. ACS Nanoscience Au, 2024https://doi.org/10.1021/acsnanoscienceau.4c00030


36. Zhe Zheng, Yafei Yao, Wen Yan, Hangyu Bu, Jianfeng Huang, and Ming Ma. Mechanistic Insights into the Abrupt Change of Electrolyte in CO2 Electroreduction. ACS Catalysis2024, 14, 8, 6328–6338.

35. Zhangben Dai, Kejun Yang, Tianyi Yang, Yalin Guo,* and Jianfeng Huang.* CO2 Photoreduction over Semiconducting 2D Materials with Supported Single Atoms: Recent Progress and Challenges. Chemistry-A European Journal, 2024, https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202400548


34. Yalin Guo, Shenghong Zhong,* Jianfeng Huang.* CO2 Photo/Electro-Conversion Mechanism. Chapter 2 of Wiley Book “CO2 Conversion and Utilization: Photocatalytical and Electrochemical Methods and Applications”. 2023, https://doi.org/10.1002/9783527841806.ch2

33. Xin Xu, Yang Wei, Linhua Mi, Guodong Pan, Yajun He, Siting Cai, Chaoyang Zheng, Yaming Jiang, Bin Chen, Liuyi Li, Shenghong Zhong,* Jianfeng Huang,* Wenbin Hu, Yan Yu.* Interstitial Sn-Doping Promotes Electrocatalytic CO2-to-Formate Conversion on Bismuth. Science China Materials, 2023, 66(9): 3539–3546. https://link.springer.com/article/10.1007/s40843-023-2495-7

32. Lin, T.; Yang, T.; Cai, Y.; Li, J.; Lu, G.; Chen, S.; Li, Y.; Guo, L.;* Maier, S.;* Liu, C.;* Huang, J.* Transformation-optics-designed Plasmonic Singularities for Efficient Photocatalytic Hydrogen Evolution at Metal/Semiconductor Interfaces. Nano Letters, 2023, 23(11), 5288-5296. https://pubs.acs.org/doi/10.1021/acs.nanolett.3c01287

31. Huang, H.; Yang, T.; Sun, F.; Liu, Z.;* Tang, Q.;* Liu, L.; Han, Y.; Huang, J.* Leveraging Pd(100)/SnO2 Interfaces for Highly Efficient Electrochemical Formic Acid Oxidation. Nanoscale, 2023, 15(5), 2122-2133. (Emerging Investigators) https://pubs.rsc.org/en/content/articlelanding/2023/nr/d2nr06142b

30. Liu, Z.; Huang, J.* Fundamentals of the catalytic conversion of methanol to hydrocarbons. Chemical Synthesis, 2022, 2 (4), 21. https://www.oaepublish.com/articles/cs.2022.26

29. Xiao, H.; Fu, J.; Wei, X.; Wang, B.; Qian, Q.; Huang, J.;* Li, R.;* Zang, Z.* Photoelectron-Extractive and Ambient-Stable CsPbBr3@SnO2 Nanocrystals for High-Performance Photodetection. Laser & Photonics Reviews, 2022, 2200276. https://onlinelibrary.wiley.com/doi/full/10.1002/lpor.202200276

28. Huang, J.;* Yang, T.; Zhao, K.; Chen, S.; Huang, Q.; Han, Y.* Copper-comprising nanocrystals as well-defined electrocatalysts to advance electrochemical CO2 reduction. Journal of Energy Chemistry, 2021, 62, 71-102. https://www.sciencedirect.com/science/article/pii/S2095495621001297

27. Ma, R.; Chen, Y.-L.; Shen, Y.; Wang, H.; Zhang, W.;* Pang, S.-S.; Huang, J.;* Han, Y.; Zhao, Y.* Anodic SnO2 porous nanostructures with rich grain boundaries for efficient CO2 electroreduction to formate. RSC Advances, 2020, 10 (38), 22828-22835.

26. Zhao, Y.; Ma, X.; Li, P.; Lv, Y.; Huang, J.; Zhang, H.; Shen, Y.; Deng, Q.; Liu, X.; Ding, Y.; Han, Y. Bifunctional polymer-of-intrinsic-microporosity membrane for flexible Li/Na–H2O2 batteries with hybrid electrolytes. Journal of Materials Chemistry A 2020, 8 (6), 3491-3498.

25. Wang, J.; Liu, L.; Chen, C.; Dong, X.; Wang, Q.; Alfilfil, L.; AlAlouni, M. R.; Yao, K.; Huang, J.; Zhang, D.; Han, Y. Engineering effective structural defects of metal–organic frameworks to enhance their catalytic performances. Journal of Materials Chemistry A 2020, 8 (8), 4464-4472.

24. Huang, J.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO2 Reduction Revealed by Ag-Cu Nanodimers. J. Am. Chem. Soc. 2019, 141 (6), 2490-2499.

23. Iyengar, P.; Huang, J.; De Gregorio, G. L.; Gadiyar, C.; Buonsanti, R. Size-dependent selectivity of Cu nano-octahedra catalysts for the electrochemical reduction of CO2 to CH4. Chem. Commun. 2019, 55 (60), 8796-8799.

22. Varandili, S. B.; Huang, J.; Oveisi, E.; De Gregorio, G. L.; Mensi, M.; Strach, M.; Vavra, J.; Gadiyar, C.; Bhowmik, A.; Buonsanti, R. Synthesis of Cu/CeO2-x Nanocrystalline Heterodimers with Interfacial Active Sites To Promote CO2 Electroreduction. ACS Catalysis 2019, 5035-5046.

21. Ma, C.; Liu, C.; Huang, J.; Ma, Y.; Liu, Z.; Li, L.-J.; Anthopoulos, T. D.; Han, Y.; Fratalocchi, A.; Wu, T. PlasmonicEnhanced Light Harvesting and Perovskite Solar Cell Performance Using Au Biometric Dimers with Broadband Structural Darkness. Solar RRL 2019, 3 (8).

20. Mangione, G.; Huang, J.; Buonsanti, R.; Corminboeuf, C. Dual-Facet Mechanism in Copper Nanocubes for Electrochemical CO2 Reduction into Ethylene. J. Phys. Chem. Lett. 2019, 10 (15), 4259-4265.

19. Huang, J.; Hormann, N.; Oveisi, E.; Loiudice, A.; De Gregorio, G. L.; Andreussi, O.; Marzari, N.; Buonsanti, R. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nature Communications 2018, 9 (1), 3117.

18. Huang, J.; Buonsanti, R. Colloidal Nanocrystals as Heterogeneous Catalysts for Electrochemical CO2 Conversion. Chem. Mater. 2018, 31 (1), 13-25.

17. Liu, C.;# Huang, J.;# Hsiung, C.-E.; Tian, Y.; Wang, J.; Han, Y.; Fratalocchi, A. High-Performance Large-Scale Solar Steam Generation with Nanolayers of Reusable Biomimetic Nanoparticles. Advanced Sustainable Systems 2017, 1 (1-2), 1600013.

16. Tian, Q.; Liu, Z.; Zhu, Y.; Dong, X.; Saih, Y.; Basset, J.-M.; Sun, M.; Xu, W.; Zhu, L.; Zhang, D.; Huang, J.; Meng, X.; Xiao, F.-S.; Han, Y. Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites. Adv. Funct. Mater. 2016, 26 (12), 1881-1891.

15. Liu, C.;* Huang, J.* Physicist meets chemist. Nature Nanotechnol. 2016, 11 (1), 104.

14. Huang, J.; Zhu, Y.; Liu, C.; Shi, Z.; Fratalocchi, A.; Han, Y.  Unravelling Thiol's Role in Directing Asymmetric Growth of Au Nanorod-Au Nanoparticle Dimers. Nano Letters 2016, 16 (1), 617-23.

13. Huang, J.; Liu, C.; Zhu, Y.; Masala, S.; Alarousu, E.; Han, Y.; Fratalocchi, A. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nature Nanotechnol. 2016, 11 (1), 60-6.

12. Wang, L.; Zhu, Y.; Wang, J. Q.; Liu, F.; Huang, J.; Meng, X.; Basset, J. M.; Han, Y.; Xiao, F. S. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds. Nature Communications 2015, 6, 6957.

11. Huang, J.; Zhu, Y.; Liu, C.; Zhao, Y.; Liu, Z.; Hedhili, M. N.; Fratalocchi, A.; Han, Y. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances. Small 2015, 11 (39), 5214-21.

10. Huang, J.; Han, Y. Diverse Near-Infrared Resonant Gold Nanostructures for Biomedical Applications. ACS Symp. Ser. 2015, 1215, 213-243.

9. Zhu, Y.; He, J.; Shang, C.; Miao, X.; Huang, J.; Liu, Z.; Chen, H.; Han, Y. Chiral Gold Nanowires with Boerdijk–Coxeter–Bernal Structure. J. Am. Chem. Soc. 2014, 136 (36), 12746-12752.

8. Huang, J.; Zhu, Y.; Lin, M.; Wang, Q.; Zhao, L.; Yang, Y.; Yao, K. X.; Han, Y. Site-specific growth of Au–Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy. J. Am. Chem. Soc. 2013, 135 (23), 8552-8561.

7. Li, S.; Hu, D.; Huang, J.; Cai, L. Optical sensing nanostructures for porous silicon rugate filters. Nanoscale Res. Lett. 2012, 7 (1), 1-8.

6. Li, S.; Huang, J.; Cai, L. A porous silicon optical microcavity for sensitive bacteria detection. Nanotechnology 2011, 22 (42), 425502.

5. Huang, J.; Li, S.; Chen, Q.; Cai, L. Optical characteristics and environmental pollutants detection of porous silicon microcavities. Science China Chemistry 2011, 54 (8), 1348-1356.

4. Huang, J.; Vongehr, S.; Tang, S.; Lu, H.; Meng, X. Highly catalytic Pd−Ag bimetallic dendrites. J. Phys. Chem. C 2010, 114 (35), 15005-15010.

3. Zhu, S.; Huang, J.; Tang, S.; Meng, X. Synthesis of Ag microparticles with hierarchical nanostructure on the anode of a galvanic cell. Mater. Chem. Phys. 2009, 118 (2), 442-446.

2. Lu, H.; Gu, M.; Huang, J.; Hu, Y.; Meng, X. In-situ polymerized nanosilica/acrylic/epoxy hybrid coating: Preparation, microstructure and properties. Science China Technological Sciences 2009, 52 (8), 2204-2209.

1. Huang, J.; Vongehr, S.; Tang, S.; Lu, H.; Shen, J.; Meng, X. Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity. Langmuir 2009, 25 (19), 11890-6.