
© 2023 Chongqing University, CONE Lab, All Rights Reserved
Technical Support: Chongqing Massivesoft Sci.&Tech. Co.
40. Tianyi Yang, Binbin Lu, Yong Zuo, Jianfeng Huang.* Configuration Engineering of Plasmonic-metal/Semiconductor Nanohybrids for Solar Fuel Production. Chemistry of Materials, 2025, Accepted. (Up-and-Coming Perspectives: https://pubs.acs.org/page/cmatex/up-and-coming-perspectives)
39. Tianyi Yang, Fangxi Su, Dehuan Shi, Shenghong Zhong, Yalin Guo, Zhaohui Liu,* Jianfeng Huang.* Efficient Propane Dehydrogenation Catalyzed by Ru Nanoparticles Anchored on a Porous Nitrogen-Doped Carbon Matrix. Chinese Chemical Letters, 2025, https://doi.org/10.1016/j.cclet.2024.110444
38. Bin Chen, Dehuan Shi, Renxia Deng, Xin Xu, Wenxia Liu, Yang Wei, Zheyuan Liu, Shenghong Zhong,* Jianfeng Huang,* Yan Yu*. Leveraging Atomic-Scale Synergy for Selective CO2 Electrocatalysis to CO over CuNi Dual-Atom Catalysts. ACS Catalysis, 2024, https://pubs.acs.org/doi/10.1021/acscatal.4c05169
37. Dan Luo, Zhiheng Xie, Shuangqun Chen, Tianyi Yang, Yalin Guo,* Ying Liu, Zhouhao Zhu, Liyong Gan,* Lingmei Liu and Jianfeng Huang.* Enhancing Electrocatalytic Semihydrogenation of Alkynes via Weakening Alkene Adsorption over Electron-depleted Cu Nanowires. ACS Nanoscience Au, 2024, Published as part of Special Issue “Advances in Energy Conversion and Storage at the Nanoscale” https://doi.org/10.1021/acsnanoscienceau.4c00030
36. Zhe Zheng, Yafei Yao, Wen Yan, Hangyu Bu, Jianfeng Huang, and Ming Ma. Mechanistic Insights into the Abrupt Change of Electrolyte in CO2 Electroreduction. ACS Catalysis, 2024, https://doi.org/10.1021/acscatal.4c00869
35. Zhangben Dai, Kejun Yang, Tianyi Yang, Yalin Guo,* and Jianfeng Huang.* CO2 Photoreduction over Semiconducting 2D Materials with Supported Single Atoms: Recent Progress and Challenges. Chemistry-A European Journal, 2024, https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202400548
34. Yalin Guo, Shenghong Zhong,* Jianfeng Huang.* CO2 Photo/Electro-Conversion Mechanism. Chapter 2 of Wiley Book “CO2 Conversion and Utilization: Photocatalytical and Electrochemical Methods and Applications”. 2023, https://doi.org/10.1002/9783527841806.ch2
33. Xin Xu, Yang Wei, Linhua Mi, Guodong Pan, Yajun He, Siting Cai, Chaoyang Zheng, Yaming Jiang, Bin Chen, Liuyi Li, Shenghong Zhong,* Jianfeng Huang,* Wenbin Hu, Yan Yu.* Interstitial Sn-Doping Promotes Electrocatalytic CO2-to-Formate Conversion on Bismuth. Science China Materials, 2023, 66(9): 3539–3546. https://link.springer.com/article/10.1007/s40843-023-2495-7
32. Lin, T.; Yang, T.; Cai, Y.; Li, J.; Lu, G.; Chen, S.; Li, Y.; Guo, L.;* Maier, S.;* Liu, C.;* Huang, J.* Transformation-optics-designed Plasmonic Singularities for Efficient Photocatalytic Hydrogen Evolution at Metal/Semiconductor Interfaces. Nano Letters, 2023, 23(11), 5288-5296. https://pubs.acs.org/doi/10.1021/acs.nanolett.3c01287
31. Huang, H.; Yang, T.; Sun, F.; Liu, Z.;* Tang, Q.;* Liu, L.; Han, Y.; Huang, J.* Leveraging Pd(100)/SnO2 Interfaces for Highly Efficient Electrochemical Formic Acid Oxidation. Nanoscale, 2023, 15, 2122. (Emerging Investigators https://pubs.rsc.org/en/content/articlelanding/2023/nr/d2nr06142b)
30. Liu, Z.; Huang, J.* Fundamentals of the catalytic conversion of methanol to hydrocarbons. Chemical Synthesis, 2022, 2 (4), 21. https://www.oaepublish.com/articles/cs.2022.26
29. Xiao, H.; Fu, J.; Wei, X.; Wang, B.; Qian, Q.; Huang, J.;* Li, R.;* Zang, Z.* Photoelectron-Extractive and Ambient-Stable CsPbBr3@SnO2 Nanocrystals for High-Performance Photodetection. Laser & Photonics Reviews, 2022, 2200276. https://onlinelibrary.wiley.com/doi/full/10.1002/lpor.202200276
28. Huang, J.;* Yang, T.; Zhao, K.; Chen, S.; Huang, Q.; Han, Y.* Copper-comprising nanocrystals as well-defined electrocatalysts to advance electrochemical CO2 reduction. Journal of Energy Chemistry, 2021, 62, 71-102. https://www.sciencedirect.com/science/article/pii/S2095495621001297
27. Ma, R.; Chen, Y.-L.; Shen, Y.; Wang, H.; Zhang, W.;* Pang, S.-S.; Huang, J.;* Han, Y.; Zhao, Y.* Anodic SnO2 porous nanostructures with rich grain boundaries for efficient CO2 electroreduction to formate. RSC Advances, 2020, 10 (38), 22828-22835.
26. Zhao, Y.; Ma, X.; Li, P.; Lv, Y.; Huang, J.; Zhang, H.; Shen, Y.; Deng, Q.; Liu, X.; Ding, Y.; Han, Y. Bifunctional polymer-of-intrinsic-microporosity membrane for flexible Li/Na–H2O2 batteries with hybrid electrolytes. Journal of Materials Chemistry A 2020, 8 (6), 3491-3498.
25. Wang, J.; Liu, L.; Chen, C.; Dong, X.; Wang, Q.; Alfilfil, L.; AlAlouni, M. R.; Yao, K.; Huang, J.; Zhang, D.; Han, Y. Engineering effective structural defects of metal–organic frameworks to enhance their catalytic performances. Journal of Materials Chemistry A 2020, 8 (8), 4464-4472.
24. Huang, J.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO2 Reduction Revealed by Ag-Cu Nanodimers. J. Am. Chem. Soc. 2019, 141 (6), 2490-2499.
23. Iyengar, P.; Huang, J.; De Gregorio, G. L.; Gadiyar, C.; Buonsanti, R. Size-dependent selectivity of Cu nano-octahedra catalysts for the electrochemical reduction of CO2 to CH4. Chem. Commun. 2019, 55 (60), 8796-8799.
22. Varandili, S. B.; Huang, J.; Oveisi, E.; De Gregorio, G. L.; Mensi, M.; Strach, M.; Vavra, J.; Gadiyar, C.; Bhowmik, A.; Buonsanti, R. Synthesis of Cu/CeO2-x Nanocrystalline Heterodimers with Interfacial Active Sites To Promote CO2 Electroreduction. ACS Catalysis 2019, 5035-5046.
21. Ma, C.; Liu, C.; Huang, J.; Ma, Y.; Liu, Z.; Li, L.-J.; Anthopoulos, T. D.; Han, Y.; Fratalocchi, A.; Wu, T. Plasmonic‐Enhanced Light Harvesting and Perovskite Solar Cell Performance Using Au Biometric Dimers with Broadband Structural Darkness. Solar RRL 2019, 3 (8).
20. Mangione, G.; Huang, J.; Buonsanti, R.; Corminboeuf, C. Dual-Facet Mechanism in Copper Nanocubes for Electrochemical CO2 Reduction into Ethylene. J. Phys. Chem. Lett. 2019, 10 (15), 4259-4265.
19. Huang, J.; Hormann, N.; Oveisi, E.; Loiudice, A.; De Gregorio, G. L.; Andreussi, O.; Marzari, N.; Buonsanti, R. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nature Communications 2018, 9 (1), 3117.
18. Huang, J.; Buonsanti, R. Colloidal Nanocrystals as Heterogeneous Catalysts for Electrochemical CO2 Conversion. Chem. Mater. 2018, 31 (1), 13-25.
17. Liu, C.;# Huang, J.;# Hsiung, C.-E.; Tian, Y.; Wang, J.; Han, Y.; Fratalocchi, A. High-Performance Large-Scale Solar Steam Generation with Nanolayers of Reusable Biomimetic Nanoparticles. Advanced Sustainable Systems 2017, 1 (1-2), 1600013.
16. Tian, Q.; Liu, Z.; Zhu, Y.; Dong, X.; Saih, Y.; Basset, J.-M.; Sun, M.; Xu, W.; Zhu, L.; Zhang, D.; Huang, J.; Meng, X.; Xiao, F.-S.; Han, Y. Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites. Adv. Funct. Mater. 2016, 26 (12), 1881-1891.
15. Liu, C.;* Huang, J.* Physicist meets chemist. Nature Nanotechnol. 2016, 11 (1), 104.
14. Huang, J.; Zhu, Y.; Liu, C.; Shi, Z.; Fratalocchi, A.; Han, Y. Unravelling Thiol's Role in Directing Asymmetric Growth of Au Nanorod-Au Nanoparticle Dimers. Nano Letters 2016, 16 (1), 617-23.
13. Huang, J.; Liu, C.; Zhu, Y.; Masala, S.; Alarousu, E.; Han, Y.; Fratalocchi, A. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nature Nanotechnol. 2016, 11 (1), 60-6.
12. Wang, L.; Zhu, Y.; Wang, J. Q.; Liu, F.; Huang, J.; Meng, X.; Basset, J. M.; Han, Y.; Xiao, F. S. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds. Nature Communications 2015, 6, 6957.
11. Huang, J.; Zhu, Y.; Liu, C.; Zhao, Y.; Liu, Z.; Hedhili, M. N.; Fratalocchi, A.; Han, Y. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances. Small 2015, 11 (39), 5214-21.
10. Huang, J.; Han, Y. Diverse Near-Infrared Resonant Gold Nanostructures for Biomedical Applications. ACS Symp. Ser. 2015, 1215, 213-243.
9. Zhu, Y.; He, J.; Shang, C.; Miao, X.; Huang, J.; Liu, Z.; Chen, H.; Han, Y. Chiral Gold Nanowires with Boerdijk–Coxeter–Bernal Structure. J. Am. Chem. Soc. 2014, 136 (36), 12746-12752.
8. Huang, J.; Zhu, Y.; Lin, M.; Wang, Q.; Zhao, L.; Yang, Y.; Yao, K. X.; Han, Y. Site-specific growth of Au–Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy. J. Am. Chem. Soc. 2013, 135 (23), 8552-8561.
7. Li, S.; Hu, D.; Huang, J.; Cai, L. Optical sensing nanostructures for porous silicon rugate filters. Nanoscale Res. Lett. 2012, 7 (1), 1-8.
6. Li, S.; Huang, J.; Cai, L. A porous silicon optical microcavity for sensitive bacteria detection. Nanotechnology 2011, 22 (42), 425502.
5. Huang, J.; Li, S.; Chen, Q.; Cai, L. Optical characteristics and environmental pollutants detection of porous silicon microcavities. Science China Chemistry 2011, 54 (8), 1348-1356.
4. Huang, J.; Vongehr, S.; Tang, S.; Lu, H.; Meng, X. Highly catalytic Pd−Ag bimetallic dendrites. J. Phys. Chem. C 2010, 114 (35), 15005-15010.
3. Zhu, S.; Huang, J.; Tang, S.; Meng, X. Synthesis of Ag microparticles with hierarchical nanostructure on the anode of a galvanic cell. Mater. Chem. Phys. 2009, 118 (2), 442-446.
2. Lu, H.; Gu, M.; Huang, J.; Hu, Y.; Meng, X. In-situ polymerized nanosilica/acrylic/epoxy hybrid coating: Preparation, microstructure and properties. Science China Technological Sciences 2009, 52 (8), 2204-2209.
1. Huang, J.; Vongehr, S.; Tang, S.; Lu, H.; Shen, J.; Meng, X. Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity. Langmuir 2009, 25 (19), 11890-6.